Hydrogeochemical baseline in a human-altered landscape of the central Pacific coast of Costa Rica.

Hydrogeochemical baseline in a human-altered landscape of the central Pacific coast of Costa Rica.

Sánchez-Gutiérrez, R;Mena-Rivera, L;Sánchez-Murillo, R;Fonseca-Sánchez, A;Madrigal-Solís, H;
environmental geochemistry and health 2020
259
snchezgutirrez2020hydrogeochemicalenvironmental

Abstract

Groundwater pollution in tropical and human-altered coastal landscapes is receiving novel attention due to decreasing in annual recharge as a consequence of recurrent droughts and overexploitation, whereby saline intrusion, point and diffuse source contamination, and water conflicts are common denominators. This study presents a detailed groundwater evaluation in a coastal aquifer within the central Pacific coast of Costa Rica. Three sampling campaigns including major ions, heavy metals, and fecal coliform analyses were conducted between July 2013 and March 2014 across 17 wells within the alluvial and fissured units of the Jacó aquifer. The groundwater system is classified as mixed HCO-Ca-Mg type. Coliforms presence was found in two wells, nearby Mona Creek headwaters and near the coastal line. Heavy metal concentrations were below quantification limits in most of the wells; however, chromium concentrations up to 6.56 μg/L were quantified within the coastal line and central portion of the alluvial aquifer in 20 out of the 48 samples. The spatial distribution of major ions (K, Na, Ca, Mg, Cl, SO, and HCO) exhibited an increasing trend towards the central portion of the alluvial aquifer, which may be potentially associated with the large unregulated urban expansion, invoking a need of a continuous water quality monitoring program in this touristic hot spot. This study provides useful information for other similar coastal aquifers in Central America, whereby increasing population growth and unregulated touristic, industrial, and agricultural activities are posing a truly challenge to ensure water security and sustainability parallel to the economic development in a changing climate.

Citation

ID: 83021
Ref Key: snchezgutirrez2020hydrogeochemicalenvironmental
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
83021
Unique Identifier:
10.1007/s10653-019-00501-5
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet