Uncovering Two Principles of Multivariate Hierarchical Metal-Organic Framework Synthesis via Retrosynthetic Design.

Uncovering Two Principles of Multivariate Hierarchical Metal-Organic Framework Synthesis via Retrosynthetic Design.

Feng, Liang;Yuan, Shuai;Li, Jia-Luo;Wang, Kun-Yu;Day, Gregory S;Zhang, Peng;Wang, Ying;Zhou, Hong-Cai;
acs central science 2018 Vol. 4 pp. 1719-1726
389
feng2018uncovering

Abstract

Multivariate (MTV) hierarchical metal-organic frameworks (MOFs), which contain multiple regions arranged in ordered structures, show promise for applications such as gas separation, size-selective catalysis, and controlled drug delivery. However, the complexity of these hierarchical MOFs is limited by a lack of control during framework assembly. Herein, we report the controlled generation of hierarchical MOF-on-MOF structural formation under the guidance of two design principles, surface functionalization and retrosynthetic techniques for stability control. Accordingly, the tunability of spatial distributions, compositions, and crystal sizes has been achieved in these hierarchical systems. The resulting MOF-on-MOF hierarchical structures represent a unique crystalline porous material which contains a controllable distribution of functional groups and metal clusters that are associated together within a framework composite. This general synthetic approach not only expands the scope and tunability of the traditional MTV strategy to multicomponent materials, but also offers a facile route to introduce variants and sequences to sophisticated three-dimensional hierarchical and cooperative systems. As a proof of concept, the photothermal effects of a porphyrinic core-MOF are exploited to trigger the controlled guest release from a shell-MOF with high guest capacity, highlighting the integrated cooperative behaviors in multivariate hierarchical systems.

Citation

ID: 708
Ref Key: feng2018uncovering
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
708
Unique Identifier:
10.1021/acscentsci.8b00722
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet