Ready for the journey: a comparative proteome profiling of porcine cauda epididymal fluid and spermatozoa.

Ready for the journey: a comparative proteome profiling of porcine cauda epididymal fluid and spermatozoa.

Weber, Augusto;Argenti, Laura Espíndola;de Souza, Ana Paula Binato;Santi, Lucélia;Beys-da-Silva, Walter Orlando;Yates, John R;Bustamante-Filho, Ivan Cunha;
cell and tissue research 2019
281
weber2019readycell

Abstract

In the present study, we describe the proteome of porcine cauda epididymis fluid and spermatozoa by means of Multidimensional Protein Identification Technology (MudPIT). Ten sexually mature healthy boars were surgically castrated and epididymides were dissected to obtain the cauda epididymal content. Polled protein extracts of cauda epididymal fluid (CEF) and spermatozoa (CESperm) were loaded in an Agilent 1100 quaternary HPLC and peptides eluted from the microcapillary column were electro-sprayed directly into a LTQ Orbitrap XL mass spectrometer. Using bioinformatics, identified proteins were classified by their molecular functions, involvement in biological processes and participation in relevant metabolic pathways associated with spermatozoa physiology, fertility potential and protection. A total of 645 proteins were identified in the CEF, with epididymal-specific lipocalin-5, beta-hexosaminidase subunit beta precursor and phosphatidylethanolamine-binding protein 4 being the most abundant proteins found. A total of 2886 proteins were identified in the CESperm proteome with 81 proteins being considered more abundant (spectral counts > 100). CEF and CESperm data were compared and 345 proteins were present in both proteomes. Phosphatidylethanolamine-binding protein 4 precursor was the only protein found most abundant in both CEF and CESperm proteomes. Based on Gene Ontology analysis, we identified CEF and CESperm proteins associated with sperm protection against ROS and immune mediated response, glycosaminoglycan degradation, ubiquitin-proteasome system, metabolic process and maturation, modulation of acrosome reaction and ZP binding and oocyte penetration. These results provide a better comprehension about the molecular process and biological pathways involved in sperm epididymis maturation and establishment of the cauda epididymis sperm reservoir.

Citation

ID: 18336
Ref Key: weber2019readycell
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
18336
Unique Identifier:
10.1007/s00441-019-03080-0
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet