A novel SERPINC1 frameshift mutation in two antithrombin deficiency families.

A novel SERPINC1 frameshift mutation in two antithrombin deficiency families.

Zhang, Donglei;Sun, Boyang;Zhang, Xian;Li, Huiyuan;Lin, Yani;Qin, Li;Chen, Long;Zhang, Lei;Ru, Kun;Yang, Renchi;
international journal of laboratory hematology 2019 Vol. 21 pp. 478-492
230
zhang2019ainternational

Abstract

Strawberry is often subjected to cold stress in temperate regions when insulation measures are not strictly applied in protected cultivation. Cold stress adversely influences plant growth and development by triggering a massive change to the transcriptome. To provide the potential strategies in improving strawberry cold tolerance and give a glimpse into the understanding of the complex cold signaling pathways in plants, this study identified attractive candidate genes and revealed diverse regulatory networks that responded to cold stress in strawberry () by a transcriptomic analysis. Totally, there were 2397 differentially expressed genes (DEGs) under cold stress treatment (T1) normal treatment (CK). Of these, 1180 DEGs were upregulated, while 1217 DEGs were downregulated. Functional enrichment analysis showed that DEGs were significantly (adjusted value < 0.05) overrepresented in six pathways including plant hormone signal transduction, flavonoid biosynthesis, mitogen-activated protein kinase (MAPK) signaling, starch and sucrose metabolism, circadian rhythm, and alpha-linolenic acid metabolism. The cold signaling initiated expression of downstream cold-responsive (COR) genes with cis-acting element ABRE or CRT/DRE in the ABA-independent or ABA-dependent pathway to impel plant defense against the stress. Strikingly, GIGANTEA (gene id 101308922), two-component response regulator-like PRR95 (gene id 101295449), and ethylene-responsive transcription factor ERF105-like (gene id 101295082) were dramatically induced under low-temperature treatment, indicating that they played an important role in response to cold stress in strawberry.

Citation

ID: 13632
Ref Key: zhang2019ainternational
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
13632
Unique Identifier:
10.1111/ijlh.13097
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet