Structural insights into the catalytic mechanism of a novel glycoside hydrolase family 113 β-1,4-mannanase from .

Structural insights into the catalytic mechanism of a novel glycoside hydrolase family 113 β-1,4-mannanase from .

You, Xin;Qin, Zhen;Yan, Qiaojuan;Yang, Shaoqing;Li, Yanxiao;Jiang, Zhengqiang;
The Journal of biological chemistry 2018 Vol. 293 pp. 11746-11757
388
you2018structuralthe

Abstract

β-1,4-Mannanase degrades β-1,4-mannan polymers into manno-oligosaccharides with a low degree of polymerization. To date, only one glycoside hydrolase (GH) family 113 β-1,4-mannanase, from (ManA), has been structurally characterized, and no complex structure of enzyme-manno-oligosaccharides from this family has been reported. Here, crystal structures of a GH family 113 β-1,4-mannanase from (Man113A) and its complexes with mannobiose, mannotriose, mannopentaose, and mannahexaose were solved. Man113A had higher affinity for -1 and +1 mannoses, which explains why the enzyme can hydrolyze mannobiose. At least six subsites (-4 to +2) exist in the groove, but mannose units preferentially occupied subsites -4 to -1 because of steric hindrance formed by Lys-238 and Trp-239. Based on the structural information and bioinformatics, rational design was implemented to enhance hydrolysis activity. Enzyme activity of Man113A mutants V139C, N237W, K238A, and W239Y was improved by 93.7, 63.4, 112.9, and 36.4%, respectively, compared with the WT. In addition, previously unreported surface-binding sites were observed. Site-directed mutagenesis studies and kinetic data indicated that key residues near the surface sites play important roles in substrate binding and recognition. These first GH family 113 β-1,4-mannanase-manno-oligosaccharide complex structures may be useful in further studying the catalytic mechanism of GH family 113 members, and provide novel insight into protein engineering of GHs to improve their hydrolysis activity.

Citation

ID: 96945
Ref Key: you2018structuralthe
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
96945
Unique Identifier:
10.1074/jbc.RA118.002363
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet