Impact of influenza vaccine-modified infectivity on attack rate, case fatality ratio and mortality.

Impact of influenza vaccine-modified infectivity on attack rate, case fatality ratio and mortality.

Nah, Kyeongah;Alavinejad, Mahnaz;Rahman, Ashrafur;Heffernan, Jane M;Wu, Jianhong;
Journal of theoretical biology 2020 pp. 110190
248
nah2020impactjournal

Abstract

Generally, vaccines are designed to provide protection against infection (susceptibility), disease (symptoms and transmissibility), and/or complications. In a recent study of influenza vaccination, it was observed that vaccinated yet infected individuals experienced increased transmission levels. In this paper, using a mathematical model of infection and transmission, we study the impact of vaccine-modified effects, including susceptibility and infectivity, on important epidemiological outcomes of an immunization program. The balance between vaccine-modified susceptibility, infectivity and recovery needed in preventing an influenza outbreak, or in mitigating the health outcomes of the outbreak is studied using the SIRV-type of disease transmission model. We also investigate the impact of influenza vaccination program on the infection risk of vaccinated and non-vaccinated individuals.

Citation

ID: 94959
Ref Key: nah2020impactjournal
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
94959
Unique Identifier:
S0022-5193(20)30040-0
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet