Chemical synthesis of chitosan/silver nanocomposites films loaded with moxifloxacin: Their characterization and potential antibacterial activity.

Chemical synthesis of chitosan/silver nanocomposites films loaded with moxifloxacin: Their characterization and potential antibacterial activity.

Shah, Aamna;Yameen, Muhammad Arfat;Fatima, Nighat;Murtaza, Ghulam;
International journal of pharmaceutics 2019
451
shah2019chemical

Abstract

This article reports moxifloxacin (Mox)-loaded nanocomposite films (CSN) of chitosan and chemically reduced silver (Ag). The synthesis of silver nanoparticles was confirmed by specific surface plasmon resonance (SPR) peaks detected via UV-Visible spectroscopy at the wavelength range of 400-450 nm. The embedded Mox was chemically characterized and kinetically analyzed for in-vitro drug release and ex-vivo drug permeation through rat skin. The prepared films presented higher swelling ratio and lower tensile strength (TS) and better elongation at break (EB) than control formulation (pure chitosan film). All the prepared Mox-loaded, non-crosslinked formulations presented sustained release of drug up to 12 h while slow and prolonged drug release up to 36 h was observed in Mox-loaded crosslinked CSN films. Drug permeation studies indicated that the maximum cumulative amount of Mox permeated (%) among Mox-loaded, non-crosslinked CSN films was displayed by CSM1 (57.79%); while in case of Mox-loaded, crosslinked CSN films, the highest drug permeation was presented by CSM18 (62.87%) in 24 h. The antibacterial efficacy of the prepared films was tested in-vitro against S. aureus (ATCC # 6538), P. aeruginosa (ATCC # 9721) and two clinically isolated strains of methicillin resistant S. aureus (MRSA). CSN films presented excellent against the all the selected strains with antibacterial potential being highest against S. aureus. In summary, the promising antibacterial potential of the CSN films recommend its biomedical application for use in wound dressing.

Citation

ID: 923
Ref Key: shah2019chemical
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
923
Unique Identifier:
S0378-5173(19)30152-8
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet