Transient signal identification of HVDC transmission lines based on wavelet entropy and SVM

Transient signal identification of HVDC transmission lines based on wavelet entropy and SVM

Luo, Guomin;Yao, Changyuan;Tan, Yingjie;Liu, Yinglin;
the journal of engineering 2019 pp. -
225
luo2019transientthe

Abstract

High-voltage DC (HVDC) transmission plays an important role in power transmission projects due to its advantages of large transmission power and good control performance. As the main protection of the DC transmission line, transient protection uses the high-frequency signal generated by fault transient to detect faults, having the characteristics of fast response and high accuracy. However, the HVDC transmission line has complex conditions along the route and is vulnerable to lightning strikes and other accidents, resulting in the occurrence of a variety of transients in the line, which increases the difficulty of fault identification. Being able to reveal signal time-frequency characteristic, wavelet entropy is an effective tool of signal recognition. This study proposes a method of transient signal identification based on the wavelet entropy and support vector machine (SVM). Firstly, the transient processes of three kinds of signals, including unipolar faults, lightning strike faults, and lightning disturbances, are briefly introduced. Then the time−frequency features of three kinds of transient signals under different scenes are analysed by wavelet entropy. Finally, the training set was used to train the SVM classification model with the signal wavelet entropy being taken as the eigenvector, and the test results validate the effectiveness of the proposed method.

Citation

ID: 72132
Ref Key: luo2019transientthe
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
72132
Unique Identifier:
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet