Near-infrared light and magnetic field dual-responsive porous silicon-based nanocarriers to overcome multidrug resistance in breast cancer cells with enhanced efficiency.

Near-infrared light and magnetic field dual-responsive porous silicon-based nanocarriers to overcome multidrug resistance in breast cancer cells with enhanced efficiency.

Li, Jiachen;Zhang, Weiwei;Gao, Yan;Tong, Haibei;Chen, Zhenyu;Shi, Jisen;Santos, Hélder A;Xia, Bing;
journal of materials chemistry b 2019
306
li2019nearinfraredjournal

Abstract

The development of drug delivery systems based on external stimuli-responsive nanocarriers is important to overcome multidrug resistance in breast cancer cells. Herein, iron oxide/gold (Fe3O4/Au) nanoparticles were first fabricated via a simple hydrothermal reaction, and subsequently loaded into porous silicon nanoparticles (PSiNPs) via electrostatic interactions to construct PSiNPs@(Fe3O4/Au) nanocomposites. The as-prepared PSiNPs@(Fe3O4/Au) nanocomposites exhibited excellent super-paramagnetism, photothermal effect, and T2-weight magnetic resonance imaging capability. In particular, with the help of a magnetic field, the cellular uptake of PSiNPs@(Fe3O4/Au) nanocomposites was significantly enhanced in drug-resistant breast cancer cells. Moreover, PSiNPs@(Fe3O4/Au) nanocomposites as carriers showed a high loading and NIR light-triggered release of anticancer drugs. Based on the synergistic effect of magnetic field-enhanced cellular uptake and NIR light-triggered intracellular release, the amount of anticancer drug carried by PSiNPs@(Fe3O4/Au) nanocarriers into the nuclei of drug-resistant breast cancer cells sharply increased, accompanied by improved chemo-photothermal therapeutic efficacy. Finally, PSiNPs@(Fe3O4/Au) nanocomposites under the combined conditions of magnetic field attraction and NIR light irradiation also showed improved anticancer drug penetration and accumulation in three-dimensional multicellular spheroids composed of drug-resistant breast cancer cells, leading to a better growth inhibition effect. Overall, the fabricated PSiNPs@(Fe3O4/Au) nanocomposites demonstrated great potential for the therapy of multidrug-resistant breast cancer in future.

Citation

ID: 71926
Ref Key: li2019nearinfraredjournal
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
71926
Unique Identifier:
10.1039/c9tb02340b
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet