sPortfolio: Stratified Visual Analysis of Stock Portfolios.

sPortfolio: Stratified Visual Analysis of Stock Portfolios.

Yue, Xuanwu;Bai, Jiaxin;Liu, Qinhan;Tang, Yiyang;Puri, Abishek;Li, Ke;Qu, Huamin;
ieee transactions on visualization and computer graphics 2020 Vol. 26 pp. 601-610
311
yue2020sportfolioieee

Abstract

Quantitative Investment, built on the solid foundation of robust financial theories, is at the center stage in investment industry today. The essence of quantitative investment is the multi-factor model, which explains the relationship between the risk and return of equities. However, the multi-factor model generates enormous quantities of factor data, through which even experienced portfolio managers find it difficult to navigate. This has led to portfolio analysis and factor research being limited by a lack of intuitive visual analytics tools. Previous portfolio visualization systems have mainly focused on the relationship between the portfolio return and stock holdings, which is insufficient for making actionable insights or understanding market trends. In this paper, we present s Portfolio, which, to the best of our knowledge, is the first visualization that attempts to explore the factor investment area. In particular, sPortfolio provides a holistic overview of the factor data and aims to facilitate the analysis at three different levels: a Risk-Factor level, for a general market situation analysis; a Multiple-Portfolio level, for understanding the portfolio strategies; and a Single-Portfolio level, for investigating detailed operations. The system's effectiveness and usability are demonstrated through three case studies. The system has passed its pilot study and is soon to be deployed in industry.

Citation

ID: 69827
Ref Key: yue2020sportfolioieee
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
69827
Unique Identifier:
10.1109/TVCG.2019.2934660
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet