Fabrication and Characterization of Lutein-Loaded Nanoparticles Based on Zein and Sophorolipid: Enhancement of Water Solubility, Stability, and Bioaccessibility.

Fabrication and Characterization of Lutein-Loaded Nanoparticles Based on Zein and Sophorolipid: Enhancement of Water Solubility, Stability, and Bioaccessibility.

Yuan, Yongkai;Li, Hao;Liu, Chengzhen;Zhang, Shuaizhong;Xu, Ying;Wang, Dongfeng;
Journal of agricultural and food chemistry 2019
389
yuan2019fabricationjournal

Abstract

Lutein is a hydrophobic carotenoid with various beneficial biological activities. Its use as functional foods, however, is currently limited by its low-water solubility, chemical instability and poor bioavailability. The purpose of this work is to fabricate lutein-loaded nanoparticles to overcome these challenges. Lutein was encapsulated in zein nanoparticles coated with sophorolipid (ZSLNPs). The properties of ZSLNPs were characterized by transmission electron microscopy and dynamic light scattering. The results showed that the ZSLNPs were spheres with particle size around 200 nm and negative surface potentials (ζ = -54 mV). The encapsulation efficiency and loading capacity of the lutein in the ZSLNPs was 90.04% and 0.82%, respectively. Infrared spectroscopy analysis indicated that the dominant driving forces of the ZSLNPs formation mainly included electrostatic, hydrophobic interactions and hydrogen bonding. X-ray analysis showed that the encapsulated lutein was in an amorphous form. Circular dichroism analysis suggested that the incorporation of lutein or sophorolipid led to the change in secondary structure of zein. In addition, the ZSLNPs had good stability, redispersibility and increased the water solubility of lutein. Furthermore, in vitro studies showed that the ZSLNPs had great biocompatibility and bioaccessibility of lutein. Overall, these findings indicated that the core/shell nanoparticles developed in the work may be suitable for encapsulating this important nutrient in functional foods.

Citation

ID: 60035
Ref Key: yuan2019fabricationjournal
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
60035
Unique Identifier:
10.1021/acs.jafc.9b05175
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet