Epigallocatechin-3-Gallate-Rich Green Tea Extract Ameliorates Fatty Liver and Weight Gain in Mice Fed a High Fat Diet by Activating the Sirtuin 1 and AMP Activating Protein Kinase Pathway.

Epigallocatechin-3-Gallate-Rich Green Tea Extract Ameliorates Fatty Liver and Weight Gain in Mice Fed a High Fat Diet by Activating the Sirtuin 1 and AMP Activating Protein Kinase Pathway.

Bae, Ui-Jin;Park, John;Park, Il Woon;Chae, Byung Min;Oh, Mi-Ra;Jung, Su-Jin;Ryu, Geon-Seek;Chae, Soo-Wan;Park, Byung-Hyun;
The American journal of Chinese medicine 2018 Vol. 46 pp. 617-632
288
bae2018epigallocatechin3gallaterichthe

Abstract

The prevalence of metabolic diseases has risen globally in parallel with the obesity epidemic over the past few decades. Green tea has been reported to have metabolically beneficial effects on obesity; however, the mechanism by which green tea regulates lipid metabolism is not clearly understood. Male c57BL/6 mice were fed a normal chow diet, a high-fat diet (HFD), or an HFD supplemented with various doses of epigallocatechin gallate-rich green tea extract (GTE) for 12 weeks. GTE supplementation reduced body weight gain, prevented hepatic fat accumulation, decreased hypertriglyceridemia, and improved hyperglycemia and insulin resistance in HFD-fed mice. The underlying mechanisms of these beneficial effects of GTE might involve the upregulation of sirtuin 1 and AMP activated protein kinase (AMPK) and the downregulation of enzymes related to de novo lipogenesis. Consistent with the in vivo findings, GTE increased the expression and activity of sirtuin 1, enhanced the binding of sirtuin 1 to liver kinase B1 (LKB1) and subsequent deacetylation of LKB1, and reduced triglyceride accumulation in HepG2 cells. These results suggest the possible therapeutic potential of dietary epigallocatechin gallate-rich GTE supplementation for preventing the development and progression of hepatic steatosis and obesity.

Citation

ID: 47863
Ref Key: bae2018epigallocatechin3gallaterichthe
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
47863
Unique Identifier:
10.1142/S0192415X18500325
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet