A comprehensive practical laboratory course on protein engineering: Evolution of a glycine oxidase variant active on the herbicide glyphosate.

A comprehensive practical laboratory course on protein engineering: Evolution of a glycine oxidase variant active on the herbicide glyphosate.

Rosini, Elena;Pollegioni, Loredano;
biochemistry and molecular biology education : a bimonthly publication of the international union of biochemistry and molecular biology 2019
287
rosini2019abiochemistry

Abstract

Protein engineering represents a modern approach to generate novel proteins for the different fields of biotechnology. Here, we report about an 8-day laboratory activity in which students generate enzyme variants to degrade the herbicide glyphosate. The students conduct a true research experiment in an important field (bioremediation by novel, engineered enzymes) and are introduced to widely used techniques in molecular biology and protein biochemistry laboratories. Based on a docking analysis of glycine (the original substrate) and of glyphosate into the active site of glycine oxidase, residues putatively involved in substrate selectivity are identified that will become the target of site-saturation mutagenesis. Each group of students focuses on the library generated at one position and selects the most active variant based on colorimetric screening. Following protein overexpression in Escherichia coli, the selected glycine oxidase variants are purified and their kinetic properties on glycine and glyphosate assessed. The best variant identified by the whole class is then used for detecting the herbicide in water. With the help of the professor, students can improve technical skills, ability to evaluate results, team work activity, and critical thinking. © 2019 International Union of Biochemistry and Molecular Biology, 2019.

Citation

ID: 43687
Ref Key: rosini2019abiochemistry
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
43687
Unique Identifier:
10.1002/bmb.21291
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet