correlation of serum s-100 protein level with involvement of territory and size of lesion in acute ischemic stroke

correlation of serum s-100 protein level with involvement of territory and size of lesion in acute ischemic stroke

;Harish Kumar;Manoj Lakhotia;Hansraj Pahadiya;Jagdish Singh;Jainapur Ravi Sangappa;Akanksha Choudhary
almatourism 2016 Vol. 3 pp. 16-19
276
kumar2016internationalcorrelation

Abstract

Background: Cerebrovascular accident is the most common and devastating disorders in old age group. The diagnosis of stroke remains a clinical one, with confirmatory evidence obtained through neuroimaging. Neurobiochemical markers have gained special importance in the determination of brain damage resulting from acute stroke. Aim: In this study, we aimed to evaluate serum S-100 protein in blood samples from patients with acute ischemic stroke and investigate the relationship of serum S-100 protein level with the involved territory and size of the lesion. Methods: This was a prospective observational study conducted among 94 patients of acute ischemic stroke admitted to the Medicine Department within 48 h. Serum sample was collected within 48 h and was sent for measurement of serum S-100 protein level. Patients were classified according to involved territory as anterior cerebral artery (ACA), middle cerebral artery (MCA), posterior cerebral artery (PCA), and more than one territory and correlate it with S-100 protein level. All patients had cranial computerized tomography scan and magnetic resonance imaging in the first 48 h. Neurological examination was done with National Institute of Health Stroke Scale in acute stage and Rankin scale at the time of discharge. Results: Serum S-100 protein levels were significantly higher and maximum in multiple territory involvements followed by MCA, PCA, and ACA infarct. Conclusions: As serum S-100 protein level correlates with the involved territory or infarct size, we can predict the involved territory with the level of S-100 protein.

Citation

ID: 248885
Ref Key: kumar2016internationalcorrelation
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
248885
Unique Identifier:
10.4103/2350-0298.184680
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet