Development and Study of Algorithms for the Formation of Rules for Network Security Nodes in the Multi-Cloud Platform

Development and Study of Algorithms for the Formation of Rules for Network Security Nodes in the Multi-Cloud Platform

Parfenov, Denis I.;Bolodurina, Irina P.;Torchin, Vadim A.;
modelirovanie i analiz informacionnyh sistem 2019 Vol. 26 pp. 90-100
242
parfenov2019developmentmodelirovanie

Abstract

As part of the study, existing solutions aimed at ensuring the security of the network perimeter of the multi-cloud platform were considered. It is established that the most acute problem is the effective formation of rules on firewalls. Existing approaches do not allow optimizing the list of rules on nodes that control access to the network. The aim of the study is to increase the effectiveness of firewall tools by conflict-free optimization of security rules and the use of a neural network approach in software-defined networks. The proposed solution is based on the sharing of intelligent mathematical approaches and modern technologies of virtualization of network functions. In the course of experimental studies, a comparative analysis of the traditional means of rule formation, the neural network approach, and the genetic algorithm was carried out. It is recommended to use the multilayer perceptron neural network classifier for automatic construction of network security rules since it gives the best results in terms of performance. It is also recommended to reduce the size of the firewall security rule list using the Kohonen network, as this tool shows the best performance. A conflict-free optimization algorithm was introduced into the designed architecture, which produces finite optimization by ranking and deriving the most common exceptions from large restrictive rules, which allows increasing protection against attacks that are aimed at identifying security rules at the bottom of the firewall list. On the basis of the proposed solution, the adaptive firewall module was implemented as part of the research.

Citation

ID: 23858
Ref Key: parfenov2019developmentmodelirovanie
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
23858
Unique Identifier:
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet