appropriate combination of artificial intelligence and algorithms for increasing predictive accuracy management

appropriate combination of artificial intelligence and algorithms for increasing predictive accuracy management

;Shahram Gilani Nia
journal of the pakistan medical association 2010 Vol. 2 pp. -
119
nia2010journalappropriate

Abstract

In this paper a simple and effective expert system to predict random data fluctuation in short-term period is established. Evaluation process includes introducing Fourier series, Markov chain model prediction and comparison (Gray) combined with the model prediction Gray- Fourier- Markov that the mixed results, to create an expert system predicted with artificial intelligence, made this model to predict the effectiveness of random fluctuation in most data management programs to increase. The outcome of this study introduced artificial intelligence algorithms that help detect that the computer environment to create a system that experts predict the short-term and unstable situation happens correctly and accurately predict. To test the effectiveness of the algorithm presented studies (Chen Tzay len,2008), and predicted data of tourism demand for Iran model is used. Results for the two countries show output model has high accuracy.

Citation

ID: 211009
Ref Key: nia2010journalappropriate
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
211009
Unique Identifier:
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet