Modeling Microscopic Car-Following Strategy of Mixed Traffic to Identify Optimal Platoon Configurations for Multiobjective Decision-Making

Modeling Microscopic Car-Following Strategy of Mixed Traffic to Identify Optimal Platoon Configurations for Multiobjective Decision-Making

Seraj, Mudasser;Li, Jiangchen;Qiu, Zhijun;
journal of advanced transportation 2018 Vol. 2018 pp. -
348
seraj2018modelingjournal

Abstract

Microscopic detail of complex vehicle interactions in mixed traffic, involving manual driving system (MDS) and automated driving system (ADS), is imperative in determining the extent of response by ADS vehicles in the connected automated vehicle (CAV) environment. In this context, this paper proposes a naïve microscopic car-following strategy for a mixed traffic stream in CAV settings and specified shifts in traffic mobility, safety, and environmental features. Additionally, this study explores the influences of platoon properties (i.e., intra-platoon headway, inter-platoon headway, and maximum platoon length) on traffic stream characteristics. Different combinations of MDS and ADS vehicles are simulated in order to understand the variations of improvements induced by ADS vehicles in a traffic stream. Simulation results reveal that grouping ADS vehicles at the front of traffic stream to apply Cooperative Adaptive Cruise Control (CACC) based car-following model will generate maximum mobility benefits for upstream vehicles. Both mobility and environmental improvements can be realized by forming long, closely spaced ADS vehicles at the cost of reduced safety. To achieve balanced mobility, safety, and environmental advantages from mixed traffic environment, dynamically optimized platoon configurations should be determined at varying traffic conditions and ADS market penetrations.

Citation

ID: 13515
Ref Key: seraj2018modelingjournal
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
13515
Unique Identifier:
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet