Coordinated control of conventional power sources and PHEVs using jaya algorithm optimized PID controller for frequency control of a renewable penetrated power system

Coordinated control of conventional power sources and PHEVs using jaya algorithm optimized PID controller for frequency control of a renewable penetrated power system

Annamraju, A.
protection and control of modern power systems 2019 Vol. 4 pp. 0-0
492
annamraju2019coordinatedprotection

Abstract

Abstract In renewable penetrated power systems, frequency instability arises due to the volatile nature of renewable energy sources (RES) and load disturbances. The traditional load frequency control (LFC) strategy from conventional power sources (CPS) alone unable to control the frequency deviations caused by the aforementioned disturbances. Therefore, it is essential to modify the structure of LFC, to handle the disturbances caused by the RES and load. With regards to the above problem, this work proposes a novel coordinated LFC strategy with modified control signal to have Plug-in Hybrid Electric Vehicles (PHEVs) for frequency stability enhancement of the Japanese power system. Where, the coordinated control strategy is based on the PID controller, which is optimally tuned by the recently developed JAYA Algorithm (JA). Numerous simulations are performed with the proposed methodology and, the results have confirmed the effectiveness of a proposed approach over some recent and well-known techniques in literature. Furthermore, simulation results reveal that the proposed coordinated approach significantly minimizing the frequency deviations compared to the JAYA optimized LFC without PHEVs & with PHEVs but no coordination.

Citation

ID: 85564
Ref Key: annamraju2019coordinatedprotection
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
85564
Unique Identifier:
10.1186/s41601-019-0144-2
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet