Rapid aerobic visible-light-driven photo-reduction of nitrobenzene.

Rapid aerobic visible-light-driven photo-reduction of nitrobenzene.

Wu, Jing-Hang;Zhang, Feng;
The Science of the total environment 2019 Vol. 710 pp. 136322
425
wu2019rapidthe

Abstract

Many strategies have been proposed to treat wastewater containing toxic contaminants, such as nitrobenzene, prior to discharge. Most of these degradation processes, especially biodegradation, undergo a limited step of nitrobenzene reduction into aniline and a subsequent fast step of aniline mineralization. The low efficiency of nitrobenzene reduction and the requirement of an anaerobic atmosphere limit the overall degradation performance. In this communication, eosin Y is reported as a potential homogeneous catalyst for the rapid photoreduction of nitrobenzene under aerobic conditions. As a result, a conversion (~10 min) of nitrobenzene (25 mg/L) into aniline driven by visible light was achieved. The reduction rate constants under aerobic conditions (0.30 min) were even slightly higher than those under anaerobic conditions (0.28 min), and the lifetime of the catalytic system was extended. Furthermore, the mechanism of nitrobenzene transformation was speculated based on the identification of intermediate products. To provide guidance for the practical application of this pretreatment strategy, the impact of pH value and widely existing heavy metal ions on photoreduction were also demonstrated. The results from this work provide a novel insight into the integrated control of organic pollutants produced in chemical industries.

Citation

ID: 81573
Ref Key: wu2019rapidthe
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
81573
Unique Identifier:
S0048-9697(19)36318-1
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet