Exploring breast cancer response prediction to neoadjuvant systemic therapy using MRI-based radiomics: A systematic review.

Exploring breast cancer response prediction to neoadjuvant systemic therapy using MRI-based radiomics: A systematic review.

Granzier, R W Y;van Nijnatten, T J A;Woodruff, H C;Smidt, M L;Lobbes, M B I;
European journal of radiology 2019 Vol. 121 pp. 108736
267
granzier2019exploringeuropean

Abstract

MRI-based tumor response prediction to neoadjuvant systemic therapy (NST) in breast cancer patients is increasingly being studied using radiomics with outcomes that appear to be promising. The aim of this study is to systematically review the current literature and reflect on its quality.PubMed and EMBASE databases were systematically searched for studies investigating MRI-based radiomics for tumor response prediction. Abstracts were screened by two reviewers independently. The quality of the radiomics workflow of eligible studies was assessed using the Radiomics Quality Score (RQS). An overview of the methodologies used in steps of the radiomics workflow and current results are presented.Sixteen studies were included with cohort sizes ranging from 35 to 414 patients. The RQS scores varied from 0 % to 41.2 %. Methodologies in the radiomics workflow varied greatly, especially region of interest segmentation, features selection, and model development with heterogeneous outcomes as a result. Seven studies applied univariate analysis and nine studies applied multivariate analysis. Most studies performed their analysis on the pretreatment dynamic contrast-enhanced T1-weighted sequence. Entropy was the best performing individual feature with AUC values ranging from 0.83 to 0.85. The best performing multivariate prediction model, based on logistic regression analysis, scored a validation AUC of 0.94.This systematic review revealed large methodological heterogeneity for each step of the MRI-based radiomics workflow, consequently, the (overall promising) results are difficult to compare. Consensus for standardization of MRI-based radiomics workflow for tumor response prediction to NST in breast cancer patients is needed to further improve research.

Citation

ID: 65976
Ref Key: granzier2019exploringeuropean
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
65976
Unique Identifier:
S0720-048X(19)30386-9
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet