Recent advances on nanomaterials-based fluorimetric approaches for microRNAs detection.

Recent advances on nanomaterials-based fluorimetric approaches for microRNAs detection.

Norouzi, Mahdi;Yasamineh, Saman;Montazeri, Maryam;Dadashpour, Mehdi;Sheervalilou, Roghayeh;Abasi, Mozhgan;Pilehvar-Soltanahmadi, Younes;
materials science & engineering c, materials for biological applications 2019 Vol. 104 pp. 110007
400
norouzi2019recentmaterials

Abstract

MicroRNAs are types of small single-stranded endogenous highly conserved non-coding RNAs, which play main regulatory functions in a wide range of cellular and physiological events, such as proliferation, differentiation, neoplastic transformation, and cell regeneration. Recent findings have proved a close association between microRNAs expression and the development of many diseases, indicating the importance of microRNAs as clinical biomarkers and targets for drug discovery. However, due to a number of prominent characteristics like small size, high sequence similarity and low abundance, sensitive and selective identification of microRNAs has rather been a hardship through routine traditional assays, including quantitative polymerase chain reaction, microarrays, and northern blotting analysis. More recently, the soaring progression in nanotechnology and fluorimetric methodologies in combination with nanomaterials have promised microRNAs detection with high sensitivity, efficiency and selectivity, excellent reproducibility and lower cost. Therefore, this review will represent an overview of latest advances in microRNAs detection through nanomaterials-based fluorescent methods, like gold nanoparticles, silver and copper nanoclusters, graphene oxide, and magnetic silicon nanoparticles.

Citation

ID: 48428
Ref Key: norouzi2019recentmaterials
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
48428
Unique Identifier:
S0928-4931(19)30888-4
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet