the influence of rotor type and centrifugation time on the yield and purity of extracellular vesicles

the influence of rotor type and centrifugation time on the yield and purity of extracellular vesicles

;Aleksander Cvjetkovic;Jan Lötvall;Cecilia Lässer
armaghane danesh bimonthly journal 2014 Vol. 3 pp. 1-11
268
cvjetkovic2014journalthe

Abstract

Background: Extracellular vesicles (EV), the collective term for vesicles released from cells, consist of vesicle species ranging in size from 30 nm to 5 µm in diameter. These vesicles are most commonly isolated by differential centrifugations, which pellets particles based on their differential movement through the liquid medium in which they are immersed. Multiple parameters, including the utilization of different rotor types, can influence the yield and purity of isolated vesicles; however, the understanding of how these factors affect is limited. Materials and methods: Here, we compare the influence of multiple centrifugation parameters, including the use of swinging bucket and fixed angle rotors, as well as different centrifugation times, for the isolation of the smallest EVs, “exosomes.” In particular, we determine the yields of exosomal RNA and protein, as well as the nature of the isolated vesicles and possible protein contamination with methods such as electron microscopy, western blot and flow cytometry. Results: Our results show that application of a specific g-force or rotation speed by itself does not predict the ability of pelleting exosomes, and that prolonged centrifugation times can achieve greater yields of exosomal RNA and protein, whereas very long centrifugation times result in excessive protein concentrations in the exosome pellet. Conclusion: In conclusion, rotor type, g-force and centrifugation times significantly influence exosome yield during centrifugation-based isolation procedures, and current commonly recommended isolation protocols may not be fully optimized for yield and purity of exosomes.

Citation

ID: 190517
Ref Key: cvjetkovic2014journalthe
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
190517
Unique Identifier:
10.3402/jev.v3.23111
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet