the main microelements and phosphorus content of sediments formed in a drinking water supply system

the main microelements and phosphorus content of sediments formed in a drinking water supply system

;Marina Valentukeviciene;Ramune Zurauskiene;Jonas Satkunas
acta pharmaceutica (zagreb, croatia) 2016 Vol. 65 pp. 248-257
235
valentukeviciene2016estonianthe

Abstract

Groundwater is the only source for drinking water supply in Lithuania. Twenty water intakes exploiting Quaternary aquifers are operating in Vilnius City. The main aim of this study was to characterize the heavy metal content of internal pipeline sediments in the water supply network. It also provides a new insight into the accumulation of phosphorus and its variation in pipeline sediments in the study area. The results of this research reflect the level of heavy metals that accumulated during the water supply process. The main microelements detected were lead, nickel, zinc and copper. The research results will be useful for conducting preliminary evaluations of possible microelement accumulation in other similar water supply systems. The evaluation of water supply sediments is considered as one of the most important activities associated with a water safety approach. The results of this research indicate the dependence between phosphorus accumulation and Pb, Cr, Zn, Ni and Cu quantities in the internal sediments of water supply pipelines.

Citation

ID: 156161
Ref Key: valentukeviciene2016estonianthe
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
156161
Unique Identifier:
10.3176/earth.2016.16
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet