in vitro prebiotic effects and quantitative analysis of bulnesia sarmienti extract

in vitro prebiotic effects and quantitative analysis of bulnesia sarmienti extract

;Md Ahsanur Reza;Md Akil Hossain;Seung-Jin Lee;Jong-Choon Kim;Seung-Chun Park
polymers from renewable resources 2016 Vol. 24 pp. 822-830
237
reza2016journalin vitro

Abstract

Prebiotics are used to influence the growth, colonization, survival, and activity of probiotics, and enhance the innate immunity, thus improving the health status of the host. The survival, growth, and activity of probiotics are often interfered with by intrinsic factors and indigenous microbes in the gastrointestinal tract. In this study, Bulnesia sarmienti aqueous extract (BSAE) was evaluated for the growth-promoting activity of different strains of Lactobacillus acidophilus, and a simple, precise, cost-effective high-performance liquid chromatography (HPLC) method was developed and validated for the determination of active prebiotic ingredients in the extract. Different strains of L. acidophilus (probiotic) were incubated in de Man, Rogosa, and Sharpe (MRS) medium with the supplementation of BSAE in a final concentration of 0.0%, 1.0%, and 3.0% (w/v) as the sole carbon source. Growth of the probiotics was determined by measuring the pH changes and colony-forming units (CFU/mL) using the microdilution method for a period of 24 hours. The HPLC method was designed by optimizing mobile-phase composition, flow rate, column temperature, and detection wavelength. The method was validated according to the requirements of a new method, including accuracy, precision, linearity, limit of detection, limit of quantitation, and specificity. The major prebiotic active ingredients in BSAE were determined using the validated HPLC method. The rapid growth rate of different strains of L. acidophilus was observed in growth media with BSAE, whereas the decline of pH values of cultures varied in different strains of probiotics depending on the time of culture. (+)-Catechin and (−)-epicatechin were identified on the basis of their retention time, absorbance spectrum, and mass spectrometry fragmentation pattern. The developed method met the limit of all validation parameters. The prebiotic active components, (+)-catechin and (−)-epicatechin, were quantified as 1.27% and 0.71% (w/w), respectively, in crude extract, and 6.36 ± 0.06 μg/mL and 4.47 ± 0.41 μg/mL (mean ± standard deviation), respectively, in a prebiotic capsule of BSAE by HPLC analysis. BSAE contains the active components of prebiotics and enhances the growth of L. acidophilus.

Citation

ID: 144561
Ref Key: reza2016journalin vitro
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
144561
Unique Identifier:
10.1016/j.jfda.2016.03.015
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet