221 Development of abatacept- and adalimumab-specific predictive models of response to therapy in rheumatoid arthritis using data from a head-to-head study

221 Development of abatacept- and adalimumab-specific predictive models of response to therapy in rheumatoid arthritis using data from a head-to-head study

Somnath Bandyopadhyay,Michael A Maldonado,Ron Ammar,Michael Schiff,Michael Weinblatt,Roy Fleischmann,Sean E Connolly;Somnath Bandyopadhyay;Michael A Maldonado;Ron Ammar;Michael Schiff;Michael Weinblatt;Roy Fleischmann;Sean E Connolly;
rheumatology 2018 Vol. 57 pp. 1-
182
connolly2018rheumatology221

Abstract

Background: Highly effective, targeted DMARD therapies with different mechanisms of action are available for RA. Translating precision medicine into clinical practice requires treatment-specific predictive models, with a goal of individualised, targeted therapy. Therefore, we created separate predictive models for response to abatacept or adalimumab, using baseline biomarker data from the head-to-head AMPLE study.

Citation

ID: 117688
Ref Key: connolly2018rheumatology221
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
117688
Unique Identifier:
10.1093/rheumatology/key075.445
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet