Controlled Design of Functional Nano-Coatings: Reduction of Loss Mechanisms in Photoelectrochemical Water Splitting.

Controlled Design of Functional Nano-Coatings: Reduction of Loss Mechanisms in Photoelectrochemical Water Splitting.

Landsmann, Steve;Surace, Yuri;Trottmann, Matthias;Dilger, Stefan;Weidenkaff, Anke;Pokrant, Simone;
ACS applied materials & interfaces 2016 Vol. 8 pp. 12149-57
438
landsmann2016controlledacs

Abstract

Efficient water splitting with photoelectrodes requires highly performing and stable photoactive materials. Since there is no material known which fulfills all these requirements because of various loss mechanisms, we present a strategy for efficiency enhancement of photoanodes via deposition of functional coatings in the nanometer range. Origins of performance losses in particle-based oxynitride photoanodes were identified and specifically designed coatings were deposited to address each loss mechanism individually. Amorphous TiO2 located at interparticle boundaries enables high electron conductivity. A thin layer of amorphous Ta2O5 can be used as protection layer for photoanodes because of its hole conductivity and thermal and chemical stability. An amorphous layer of NiOx and Co(OH)2 reduces photocorrosion or increases water oxidation kinetics because they act as a hole-capture material or water oxidation catalyst, respectively. Crystalline CoOx nanoparticles increase photocurrent and reduce the onset potential due to enhanced charge separation. The combination of all coatings deposited by a scalable, mild, and reproducible step-by-step approach leads to high-performance oxynitride-based photoanodes providing a maximum photocurrent of 2.52 mA/cm(2) at 1.23 VRHE under AM1.5G illumination.

Citation

ID: 96954
Ref Key: landsmann2016controlledacs
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
96954
Unique Identifier:
10.1021/acsami.6b01129
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet