A Survey of Computational Intelligence Techniques for Wind Power Uncertainty Quantification in Smart Grids.

A Survey of Computational Intelligence Techniques for Wind Power Uncertainty Quantification in Smart Grids.

Quan, Hao;Khosravi, Abbas;Yang, Dazhi;Srinivasan, Dipti;
IEEE Transactions on Neural Networks and Learning Systems 2019
328
quan2019aieee

Abstract

The high penetration level of renewable energy is thought to be one of the basic characteristics of future smart grids. Wind power, as one of the most increasing renewable energy, has brought a large number of uncertainties into the power systems. These uncertainties would require system operators to change their traditional ways of decision-making. This article provides a comprehensive survey of computational intelligence techniques for wind power uncertainty quantification in smart grids. First, prediction intervals (PIs) are introduced as a means to quantify the uncertainties in wind power forecasts. Various PI evaluation indices, including the latest trends in comprehensive evaluation techniques, are compared. Furthermore, computational intelligence-based PI construction methods are summarized and classified into traditional methods (parametric) and direct PI construction methods (nonparametric). In the second part of this article, methods of incorporating wind power forecast uncertainties into power system decision-making processes are investigated. Three techniques, namely, stochastic models, fuzzy logic models, and robust optimization, and different power system applications using these techniques are reviewed. Finally, future research directions, such as spatiotemporal and hierarchical forecasting, deep learning-based methods, and integration of predictive uncertainty estimates into the decision-making process, are discussed. This survey can benefit the readers by providing a complete technical summary of wind power uncertainty quantification and decision-making in smart grids.

Citation

ID: 94300
Ref Key: quan2019aieee
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
94300
Unique Identifier:
10.1109/TNNLS.2019.2956195
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet