Future challenges with DNA-encoded chemical libraries in the drug discovery domain.

Future challenges with DNA-encoded chemical libraries in the drug discovery domain.

Zhao, Guixian;Huang, Yiran;Zhou, Yu;Li, Yizhou;Li, Xiaoyu;
expert opinion on drug discovery 2019 Vol. 14 pp. 735-753
268
zhao2019futureexpert

Abstract

: DNA-encoded chemical libraries (DELs) have come of age and emerged to become a powerful technology platform for ligand discovery in biomedical research and drug discovery. Today, DELs have been widely adopted in the pharmaceutical industry and employed in drug discovery programs worldwide. DELs are capable of interrogating drug targets with an extremely large number of compounds highly efficiently. : In this review, the authors introduce the history of DELs and provide an overview of the major technological components, including encoding methods, library synthesis, chemistry, selection methods, hit deconvolution strategy, and post-selection data analysis. A brief update on the hit compounds recently discovered from DEL selections against drug targets is also provided. Finally, the authors discuss their views on the present challenges and future directions for the development and application of DELs in drug discovery. : DELs have provided great opportunities for lead compound discovery at an unprecedented scale and efficiency in drug discovery. The key to the future success of DELs as true discovery modalities, rather than just 'a way to make many compounds,' is to go beyond physical binding to functional or even phenotypic assays with the capability to probe the biological system.

Citation

ID: 93553
Ref Key: zhao2019futureexpert
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
93553
Unique Identifier:
10.1080/17460441.2019.1614559
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet