Impacts of Silver Nanoparticles on Plants: A Focus on the Phytotoxicity and Underlying Mechanism.

Impacts of Silver Nanoparticles on Plants: A Focus on the Phytotoxicity and Underlying Mechanism.

Yan, An;Chen, Zhong;
International journal of molecular sciences 2019 Vol. 20
533
yan2019impacts

Abstract

Nanotechnology was well developed during past decades and implemented in a broad range of industrial applications, which led to an inevitable release of nanomaterials into the environment and ecosystem. Silver nanoparticles (AgNPs) are one of the most commonly used nanomaterials in various fields, especially in the agricultural sector. Plants are the basic component of the ecosystem and the most important source of food for mankind; therefore, understanding the impacts of AgNPs on plant growth and development is crucial for the evaluation of potential environmental risks on food safety and human health imposed by AgNPs. The present review summarizes uptake, translocation, and accumulation of AgNPs in plants, and exemplifies the phytotoxicity of AgNPs on plants at morphological, physiological, cellular, and molecular levels. It also focuses on the current understanding of phytotoxicity mechanisms via which AgNPs exert their toxicity on plants. In addition, the tolerance mechanisms underlying survival strategy that plants adopt to cope with adverse effects of AgNPs are discussed.

Access

Citation

ID: 928
Ref Key: yan2019impacts
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
928
Unique Identifier:
E1003
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet