Copper-based homogeneous and heterogeneous catalysts for electrochemical water oxidation.

Copper-based homogeneous and heterogeneous catalysts for electrochemical water oxidation.

Lee, Husileng;Wu, Xiujuan;Sun, Licheng;
Nanoscale 2020
341
lee2020copperbasednanoscale

Abstract

Water oxidation is currently believed to be the bottleneck in the field of electrochemical water splitting and artificial photosynthesis. Enormous efforts have been devoted toward the exploration of water oxidation catalysts (WOCs), including homogeneous and heterogeneous catalysts. Recently, Cu-based WOCs have been widely developed because of their high abundance, low cost, and biological relevance. However, to the best of our knowledge, no review has been made so far on such types of catalysts. Thus, we have summarized the recent progress made in the development of homogeneous and heterogeneous Cu-based WOCs for electrochemical catalysis. Furthermore, the evaluations of catalytic activity, stability, and mechanism of these catalysts are carefully concluded and highlighted. We believe that this review can summarize the current progress in the field of Cu-based electrochemical WOCs and help in the design of more efficient and stable WOCs.

Citation

ID: 92099
Ref Key: lee2020copperbasednanoscale
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
92099
Unique Identifier:
10.1039/c9nr10437b
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet