Using extremal events to characterize noisy time series.

Using extremal events to characterize noisy time series.

Berry, Eric;Cummins, Bree;Nerem, Robert R;Smith, Lauren M;Haase, Steven B;Gedeon, Tomas;
journal of mathematical biology 2020
226
berry2020usingjournal

Abstract

Experimental time series provide an informative window into the underlying dynamical system, and the timing of the extrema of a time series (or its derivative) contains information about its structure. However, the time series often contain significant measurement errors. We describe a method for characterizing a time series for any assumed level of measurement error [Formula: see text] by a sequence of intervals, each of which is guaranteed to contain an extremum for any function that [Formula: see text]-approximates the time series. Based on the merge tree of a continuous function, we define a new object called the normalized branch decomposition, which allows us to compute intervals for any level [Formula: see text]. We show that there is a well-defined total order on these intervals for a single time series, and that it is naturally extended to a partial order across a collection of time series comprising a dataset. We use the order of the extracted intervals in two applications. First, the partial order describing a single dataset can be used to pattern match against switching model output (Cummins et al. in SIAM J Appl Dyn Syst 17(2):1589-1616, 2018), which allows the rejection of a network model. Second, the comparison between graph distances of the partial orders of different datasets can be used to quantify similarity between biological replicates.

Citation

ID: 90349
Ref Key: berry2020usingjournal
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
90349
Unique Identifier:
10.1007/s00285-020-01471-4
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet