A Deep Ensemble Learning Method for Effort-Aware Just-In-Time Defect Prediction

A Deep Ensemble Learning Method for Effort-Aware Just-In-Time Defect Prediction

Albahli, Saleh;
future internet 2019 Vol. 11 pp. 246-
263
albahli2019afuture

Abstract

Since the introduction of just-in-time effort aware defect prediction, many researchers are focusing on evaluating the different learning methods, which can predict the defect inducing changes in a software product. In order to predict these changes, it is important for a learning model to consider the nature of the dataset, its unbalancing properties and the correlation between different attributes. In this paper, we evaluated the importance of these properties for a specific dataset and proposed a novel methodology for learning the effort aware just-in-time prediction of defect inducing changes. Moreover, we devised an ensemble classifier, which fuses the output of three individual classifiers (Random forest, XGBoost, Multi-layer perceptron) to build an efficient state-of-the-art prediction model. The experimental analysis of the proposed methodology showed significant performance with 77% accuracy on the sample dataset and 81% accuracy on different datasets. Furthermore, we proposed a highly competent reinforcement learning technique to avoid false alarms in real time predictions.

Citation

ID: 88103
Ref Key: albahli2019afuture
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
88103
Unique Identifier:
ea5b2e7fa8e4fadbfac100a7023f7ba8
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet