Development and characterization of a resistance spot welding aerosol generator and inhalation exposure system.

Development and characterization of a resistance spot welding aerosol generator and inhalation exposure system.

Afshari, Aliakbar;Zeidler-Erdely, Patti C;McKinney, Walter;Chen, Bean T;Jackson, Mark;Schwegler-Berry, Diane;Friend, Sherri;Cumpston, Amy;Cumpston, Jared L;Leonard, H Donny;Meighan, Terence G;Frazer, David G;Antonini, James M;
inhalation toxicology 2014 Vol. 26 pp. 708-19
261
afshari2014developmentinhalation

Abstract

Limited information exists regarding the health risks associated with inhaling aerosols that are generated during resistance spot welding of metals treated with adhesives. Toxicology studies evaluating spot welding aerosols are non-existent. A resistance spot welding aerosol generator and inhalation exposure system was developed. The system was designed by directing strips of sheet metal that were treated with an adhesive to two electrodes of a spot welder. Spot welds were made at a specified distance from each other by a computer-controlled welding gun in a fume collection chamber. Different target aerosol concentrations were maintained within the exposure chamber during a 4-h exposure period. In addition, the exposure system was run in two modes, spark and no spark, which resulted in different chemical profiles and particle size distributions. Complex aerosols were produced that contained both metal particulates and volatile organic compounds (VOCs). Size distribution of the particles was multi-modal. The majority of particles were chain-like agglomerates of ultrafine primary particles. The submicron mode of agglomerated particles accounted for the largest portion of particles in terms of particle number. Metal expulsion during spot welding caused the formation of larger, more spherical particles (spatter). These spatter particles appeared in the micron size mode and accounted for the greatest amount of particles in terms of mass. With this system, it is possible to examine potential mechanisms by which spot welding aerosols can affect health, as well as assess which component of the aerosol may be responsible for adverse health outcomes.

Citation

ID: 87835
Ref Key: afshari2014developmentinhalation
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
87835
Unique Identifier:
10.3109/08958378.2014.941118
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet