Image Registration based Cervical Cancer Detection and Segmentation Using ANFIS Classifier

Image Registration based Cervical Cancer Detection and Segmentation Using ANFIS Classifier

Jaya, B Karthiga;Kumar, S Senthil;
Asian Pacific journal of cancer prevention : APJCP 2018 Vol. 19 pp. 3203-3209
288
jaya2018imageasian

Abstract

Cervical cancer is the leading cancer in women around the world. In this paper, Adaptive Neuro Fuzzy Inference System (ANFIS) classifier based cervical cancer detection and segmentation methodology is proposed. This proposed system consists of the following stages as Image Registration, Feature extraction, Classifications and Segmentation. Fast Fourier Transform (FFT) is used for image registration. Then, Grey Level Co-occurrence Matrix (GLCM), Grey level and trinary features are extracted from the registered cervical image. Next, these extracted features are trained and classified using ANFIS classifier. Morphological operations are now applied over the classified cervical image to detect and segment the cancer region in cervical images. Simulations on large cervical image dataset demonstrate that the proposed cervical cancer detection and segmentation methodology outperforms the state of-the-art methods in terms of sensitivity, specificity and accuracy.

Access

Citation

ID: 85541
Ref Key: jaya2018imageasian
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
85541
Unique Identifier:
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet