Detection of Shiga toxin-producing Escherichia coli (STEC) in beef products using droplet digital PCR.

Detection of Shiga toxin-producing Escherichia coli (STEC) in beef products using droplet digital PCR.

Capobianco, Joseph A;Clark, Mike;Cariou, Astrid;Leveau, Adélaïde;Pierre, Sophie;Fratamico, Pina;Strobaugh, Terence P;Armstrong, Cheryl M;
International journal of food microbiology 2019 Vol. 319 pp. 108499
348
capobianco2019detectioninternational

Abstract

Many of the current accredited methods for the molecular detection of Shiga toxin-producing Escherichia coli (STEC) in foods rely on a PCR-based screen for the pathotype-specific genetic markers stx and eae. Unfortunately, these methods can inaccurately conclude the presence of E.coli containing both stx and eae because of the inability of the methods to determine if the two genes originated from a single organism as opposed to a mixture of organisms. This study was undertaken to evaluate if a droplet digital PCR (ddPCR)-based method that does not require DNA isolation could reliably identify the presence of an STEC containing eae in beef samples by confirming that both genes reside within the same cell, even when present in a mixed culture. The ddPCR system used in this study, dd-Check STEC Solution (Bio-Rad), works without the need for DNA isolation by partitioning intact cells into emulsion droplets, where they are lysed, and subsequently undergo multiplexed endpoint PCR. This enables the assay to differentiate between samples where a single organism contains both stx and eae from samples in which stx and eae reside in different organisms. Comparisons were made between the dd-Check STEC Solution, the BAX System Real-Time PCR STEC assay suite (Hygiena), and the iQ-Check STEC PCR detection kit (Bio-Rad) using 37 unique simulations of E. coli contamination in ground beef. While no single platform was consistently superior at detecting eae and stx across all pathogens tested, the results indicated that the dd-Check STEC Solution has the potential to reduce the number of inaccurately identified samples when screening for E. coli with a stx, eae genotype because it can identify the co-existence of multiple virulence genes within a cell even when in the presence of a mixed microbial population containing identical genes. Ultimately, incorporation of this system could result in substantial cost savings by reducing the expenses incurred when product samples are incorrectly classified as containing E. coli with a stx, eae genotype.

Citation

ID: 82593
Ref Key: capobianco2019detectioninternational
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
82593
Unique Identifier:
S0168-1605(19)30430-1
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet