Plant species-specific recognition of long and short β-1,3-linked glucans is mediated by different receptor systems.

Plant species-specific recognition of long and short β-1,3-linked glucans is mediated by different receptor systems.

Wanke, Alan;Rovenich, Hanna;Schwanke, Florian;Velte, Stefanie;Becker, Stefan;Hehemann, Jan-Hendrik;Wawra, Stephan;Zuccaro, Alga;
The Plant journal : for cell and molecular biology 2020
317
wanke2020plantthe

Abstract

Plants survey their environment for the presence of potentially harmful or beneficial microbes. During colonization, cell surface receptors perceive microbe-derived or modified-self ligands and initiate appropriate responses. The recognition of fungal chitin oligomers and the subsequent activation of plant immunity are well described. In contrast, the mechanisms underlying β-glucan recognition and signaling activation remain largely unexplored. Here, we systematically tested immune responses towards different β-glucan structures and show that responses vary between plant species. While leaves of the monocots Hordeum vulgare and Brachypodium distachyon can recognize longer (laminarin) and shorter (laminarihexaose) β-1,3-glucans with responses of varying intensity, duration and timing, leaves of the dicot Nicotiana benthamiana activate immunity in response to long β-1,3-glucans, whereas Arabidopsis thaliana and Capsella rubella perceive short β-1,3-glucans. Hydrolysis of the β-1,6 side branches of laminarin demonstrated that not the glycosidic decoration but rather the degree of polymerization plays a pivotal role in the recognition of long-chain β-glucans. Moreover, in contrast to the recognition of short β-1,3-glucan in A. thaliana, perception of long β-1,3-glucan in N. benthamiana and rice is independent of CERK1, indicating that β-glucan recognition may be mediated by multiple β-glucan receptor systems.

Citation

ID: 80517
Ref Key: wanke2020plantthe
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
80517
Unique Identifier:
10.1111/tpj.14688
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet