Flexible interlocked porous frameworks allow quantitative photoisomerization in a crystalline solid.

Flexible interlocked porous frameworks allow quantitative photoisomerization in a crystalline solid.

Zheng, Yongtai;Sato, Hiroshi;Wu, Pengyan;Jeon, Hyung Joon;Matsuda, Ryotaro;Kitagawa, Susumu;
Nature communications 2017 Vol. 8 pp. 100
558
zheng2017flexible

Abstract

Photochromic molecules have shown much promise as molecular components of stimuli-responsive materials, but despite recent achievements in various photoresponsive materials, quantitative conversion in photochemical reactions in solids is hampered by the lack of intrinsic structural flexibility available to release stress and strain upon photochemical events. This issue remains one of the challenges in developing solid-state photoresponsive materials. Here, we report a strategy to realize photoresponsive crystalline materials showing quantitative reversible photochemical reactions upon ultraviolet and visible light irradiation by introducing structural flexibility into crystalline porous frameworks with a twofold interpenetration composed of a diarylethene-based ligand. The structural flexibility of the porous framework enables highly efficient photochemical electrocyclization in a single-crystal-to-single-crystal manner. CO sorption on the porous crystal at 195 K is reversibly modulated by light irradiation, and coincident X-ray powder diffraction/sorption measurements clearly demonstrate the flexible nature of the twofold interpenetrated frameworks.Organizing photochromic molecules into 3D networks is a key strategy to access photoresponsive materials, but framework rigidity typically limits conversion efficiency. Here, the authors exploit a flexible metal-organic framework to achieve quantitative and reversible photoisomerization in a porous crystalline solid.

Citation

ID: 717
Ref Key: zheng2017flexible
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
717
Unique Identifier:
10.1038/s41467-017-00122-5
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet