Deep Learning Method Based on Gated Recurrent Unit and Variational Mode Decomposition for Short-Term Wind Power Interval Prediction.

Deep Learning Method Based on Gated Recurrent Unit and Variational Mode Decomposition for Short-Term Wind Power Interval Prediction.

Wang, Ruoheng;Li, Chaoshun;Fu, Wenlong;Tang, Geng;
IEEE Transactions on Neural Networks and Learning Systems 2019
321
wang2019deepieee

Abstract

Wind power interval prediction (WPIP) plays an increasingly important role in evaluations of the uncertainty of wind power and becomes necessary for managing and planning power systems. However, the intermittent and fluctuating characteristics of wind power mean that high-quality prediction intervals (PIs) production is a challenging problem. In this article, we propose a novel hybrid model for the WPIP based on the gated recurrent unit (GRU) neural networks and variational mode decomposition (VMD). In the hybrid model, VMD is employed to decompose complex wind power data into simplified modes. Basic GRU prediction models, comprising a GRU input layer, multiple fully connected layers, and a rank-ordered terminal layer, are then trained for each mode to produce PIs, which are combined to obtain final PIs. In addition, an adaptive optimization method based on constructed intervals (CIs) is proposed to build high-quality training labels for supervised learning with the hybrid model. Several numerical experiments were implemented to validate the effectiveness of the proposed method. The results indicate that the proposed method performs better than the traditional interval prediction models with much higher quality PIs, and it requires less training time.

Citation

ID: 66012
Ref Key: wang2019deepieee
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
66012
Unique Identifier:
10.1109/TNNLS.2019.2946414
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet