Evaluating the Emotional State of a User Using a Webcam

Evaluating the Emotional State of a User Using a Webcam

Magdin, Martin;Turcani, Milan;Hudec, Lukas;
international journal of interactive multimedia and artificial intelligence 2016 Vol. 4 pp. 61-68
210
magdin2016evaluatinginternational

Abstract

In online learning is more difficult for teachers identify to see how individual students behave. Student’s emotions like self-esteem, motivation, commitment, and others that are believed to be determinant in student’s performance can not be ignored, as they are known (affective states and also learning styles) to greatly influence student’s learning. The ability of the computer to evaluate the emotional state of the user is getting bigger attention. By evaluating the emotional state, there is an attempt to overcome the barrier between man and non-emotional machine. Recognition of a real time emotion in e-learning by using webcams is research area in the last decade. Improving learning through webcams and microphones offers relevant feedback based upon learner’s facial expressions and verbalizations. The majority of current software does not work in real time – scans face and progressively evaluates its features. The designed software works by the use neural networks in real time which enable to apply the software into various fields of our lives and thus actively influence its quality. Validation of face emotion recognition software was annotated by using various experts. These expert findings were contrasted with the software results. An overall accuracy of our software based on the requested emotions and the recognized emotions is 78%. Online evaluation of emotions is an appropriate technology for enhancing the quality and efficacy of e-learning by including the learner´s emotional states.

Keywords

Citation

ID: 65683
Ref Key: magdin2016evaluatinginternational
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
65683
Unique Identifier:
8a026a9b2a8fe971b314cf78bf6c059f
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet