Triple stimuli-responsive ZnO quantum dots-conjugated hollow mesoporous carbon nanoplatform for NIR-induced dual model antitumor therapy.

Triple stimuli-responsive ZnO quantum dots-conjugated hollow mesoporous carbon nanoplatform for NIR-induced dual model antitumor therapy.

Feng, Shuang;Mao, Yuling;Wang, Xiudan;Zhou, Meiting;Lu, Hongyan;Zhao, Qinfu;Wang, Siling;
Journal of colloid and interface science 2019 Vol. 559 pp. 51-64
435
feng2019triplejournal

Abstract

Aiming at the inefficiency and toxicity in traditional antitumor therapy, a novel multifunctional nanoplatform was constructed based on hollow mesoporous carbon (HMC) to achieve triple stimuli response and dual model antitumor therapy via chemo-photothermal synergistic effect. HMC was used as an ideal nanovehicle with a high drug loading efficiency as well as a near-infrared (NIR) photothermal conversion agent for photothermal therapy. Acid-dissoluble, luminescent ZnO quantum dots (QDs) were used as the proper sealing agents for the mesopores of HMC, conjugated to HMC via disulfide linkage to prevent drug (doxorubicin, abbreviated as Dox) premature release from Dox/HMC-SS-ZnO. After cellular endocytosis, the Dox was released in a pH, GSH and NIR laser triple stimuli-responsive manner to realize accurate drug delivery. Moreover, the local hyperthermia effect induced by NIR irradiation could promote the drug release, enhance cell sensitivity to chemotherapeutic agents, and also directly kill cancer cells. As expected, Dox/HMC-SS-ZnO exhibited a high drug loading capacity of 43%, well response to triple stimuli and excellent photothermal conversion efficiency η of 29.7%. The therapeutic efficacy in 4T1 cells and multicellular tumor spheroids (MCTSs) demonstrated that Dox/HMC-SS-ZnO + NIR had satisfactory chemo-photothermal synergistic effect with a combination index (CI) of 0.532. The cell apoptosis rate of the combined treatment group was more than 95%. The biodistribution and pharmacodynamics studies showed its biosecurity to normal tissues and synergistic inhibition effect to tumor cells. These distinguished results indicated that the Dox/HMC-SS-ZnO nanoplatform is potential to realize efficient triple stimuli-responsive drug delivery and dual model chemo-photothermal synergistic antitumor therapy.

Citation

ID: 61381
Ref Key: feng2019triplejournal
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
61381
Unique Identifier:
S0021-9797(19)31162-2
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet