Robust Methods for Automated Selection of Cardiac Signals After Blind Source Separation.

Robust Methods for Automated Selection of Cardiac Signals After Blind Source Separation.

Wedekind, Daniel;Kleyko, Denis;Osipov, Evgeny;Malberg, Hagen;Zaunseder, Sebastian;Wiklund, Urban;
ieee transactions on bio-medical engineering 2018 Vol. 65 pp. 2248-2258
248
wedekind2018robustieee

Abstract

Novel minimum-contact vital signs monitoring techniques like textile or capacitive electrocardiogram (ECG) provide new opportunities for health monitoring. These techniques are sensitive to artifacts and require handling of unstable signal quality. Spatio-temporal blind source separation (BSS) is capable of processing suchlike multichannel signals. However, BSS's permutation indeterminacy requires the selection of the cardiac signal (i.e., the component resembling the electric cardiac activity) after its separation from artifacts. This study evaluates different concepts for solving permutation indeterminacy.Novel automated component selection routines based on heartbeat detections are compared with standard concepts, as using higher order moments or frequency-domain features, for solving permutation indeterminacy in spatio-temporal BSS. BSS was applied to a textile and a capacitive ECG dataset of healthy subjects performing a motion protocol, and to the MIT-BIH Arrhythmia Database. The performance of the subsequent component selection was evaluated by means of the heartbeat detection accuracy (ACC) using an automatically selected single component.The proposed heartbeat-detection-based selection routines significantly outperformed the standard selectors based on Skewness, Kurtosis, and frequency-domain features, especially for datasets containing motion artifacts. For arrhythmia data, beat analysis by sparse coding outperformed simple periodicity tests of the detected heartbeats.Component selection routines based on heartbeat detections are capable of reliably selecting cardiac signals after spatio-temporal BSS in case of severe motion artifacts and arrhythmia.The availability of robust cardiac component selectors for solving permutation indeterminacy facilitates the usage of spatio-temporal BSS to extract cardiac signals in artifact-sensitive minimum-contact vital signs monitoring techniques.

Citation

ID: 56013
Ref Key: wedekind2018robustieee
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
56013
Unique Identifier:
10.1109/TBME.2017.2788701
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet