A time to exhaustion model during prolonged running based on wearable accelerometers.

A time to exhaustion model during prolonged running based on wearable accelerometers.

Provot, Thomas;Chiementin, Xavier;Bolaers, Fabrice;Munera, Marcela;
sports biomechanics 2019 pp. 1-14
274
provot2019asports

Abstract

Defining relationships between running mechanisms and fatigue can be a major asset for optimising training. This article proposes a biomechanical model of time to exhaustion according to indicators derived from accelerometry data collected from the body. Ten volunteers were recruited for this study. The participants were equipped with 3 accelerometers: on the right foot, at the tibia and at the L4-L5 lumbar spine. A running test was performed on a treadmill at 13.5 km/h until exhaustion. Thirty-one variables were deployed during the test. Multiple linear regressions were calculated to explain the time to exhaustion from the indicators calculated on the lumbar, tibia and foot individually and simultaneously. Time to exhaustion was predicted for simultaneous measurement points with and 21 indicators; for the lumbar with and 11 indicators; for the tibia with and 11 indicators; and for the foot with and 12 indicators. This study allows the accurate modelling of the time to exhaustion during a running-based test using indicators from accelerometer measurements. The individual models highlight that the location of the measurement point is important and that each location provides different information. Future studies should focus on homogeneous populations to improve predictions and errors.

Citation

ID: 53091
Ref Key: provot2019asports
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
53091
Unique Identifier:
10.1080/14763141.2018.1549682
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet