Development of a novel functionally graded membrane containing boron-modified bioactive glass nanoparticles for guided bone regeneration.

Development of a novel functionally graded membrane containing boron-modified bioactive glass nanoparticles for guided bone regeneration.

Moonesi Rad, Reza;Atila, Deniz;Evis, Zafer;Keskin, Dilek;Tezcaner, Ayşen;
journal of tissue engineering and regenerative medicine 2019 Vol. 13 pp. 1331-1345
270
moonesi-rad2019developmentjournal

Abstract

Barrier membranes are used in periodontal tissue engineering for successful neo-bone tissue formation and prevention of bacterial colonization. We aimed to prepare and characterize novel 7% boron-modified bioactive glass (7B-BG) containing bilayered membrane for this end. We hypothesized that presence of 7B-BG could promote structural and biological properties of guided bone regeneration (GBR) membrane. Cellulose acetate (CA) layer was prepared by solvent casting, and functionally graded layer of CA/gelatin/BG nanoparticles was prepared by electrospinning. 0B-BG, and 7B-BG were synthesized by quick alkali-mediated sol-gel method and were characterized by scanning electron microscopy (SEM) and Fourier-transform Raman spectroscopy. Membranes were cross-linked with glutaraldehyde to preserve their stability. SEM analysis showed the asymmetric nature of membranes consisting of a smooth membrane layer and a rough surface composed of 0B-BG and 7B-BG containing nanofibres. 7B-BG addition increased surface wettability (from 110.5° ± 0.8 to 73.46° ± 7.6) and biodegradability of the membranes. Additionally, a significant increase in Ca-P layer formation was observed in 7B-BG containing group after 1-week incubation in stimulated body fluid. 7B-BG incorporation resulted in a decrease in tensile strength and Young's modulus values. Human dental pulp stem cells showed better attachment, spreading, and proliferation on 7B-BG containing bilayered membranes. Osteogenic differentiation analysis revealed higher alkaline phosphatase (ALP) enzyme activity of cells (~1.5-fold), higher intracellular calcium deposition (approximately twofold), and higher calcium deposition revealed by Alizarin red staining on 7B-BG containing bilayered membranes. Overall, results suggested that functionally graded bilayered membranes hold potential for GBR applications in regenerative dentistry.

Citation

ID: 51729
Ref Key: moonesi-rad2019developmentjournal
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
51729
Unique Identifier:
10.1002/term.2877
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet