Severe malaria: update on pathophysiology and treatment.

Severe malaria: update on pathophysiology and treatment.

Brejt, Josef A;Golightly, Linnie M;
current opinion in infectious diseases 2019 Vol. 32 pp. 413-418
200
brejt2019severecurrent

Abstract

Malaria threatens the lives of over 200 million individuals with the disease each year. Plasmodium falciparum is the predominant cause of severe malaria which may be lethal and result in neurocognitive sequelae despite appropriate treatment. We review recent advances regarding the pathophysiology of severe malaria and treatment recommendations for severe disease in the United States.Infected red blood cell (iRBC) sequestration in microvascular beds is a critical factor in the development of severe malaria syndromes. Interactions between iRBC variant adhesive peptides and the endothelial protein C receptor (EPCR) result in perturbations of coagulation and cytopreservation pathways. Alterations in the protein C/EPCR axis are implicated in cerebral malaria, respiratory distress, and anemia. Brain MRIs reveal the posterior reversible encephalopathy syndrome in cerebral malaria patients. Transcriptomic analysis reveals commonalities in disease pathogenesis in children and adults despite differences in clinical presentation. US guidelines for severe malaria treatment currently recommend intravenous artesunate including in pregnant women and children.Despite advances in our understanding of malarial pathogenesis much remains unknown. Antimalarial agents eradicate parasites but no treatments are available to prevent or ameliorate severe malaria or prevent disease sequelae. Further study is needed to develop effective adjunctive therapies.

Citation

ID: 48103
Ref Key: brejt2019severecurrent
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
48103
Unique Identifier:
10.1097/QCO.0000000000000584
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet