Abstract
We examined the causal direction between gut microbiota-dependent metabolite trimethylamine-N-oxide (TMAO) or its predecessors and cardiometabolic diseases such as risk of type 2 diabetes mellitus (T2DM), coronary artery disease (CAD), myocardial infarction (MI), stroke, atrial fibrillation (AF), and chronic kidney disease (CKD). We used genetic variants as instruments to test the causal associations. Genetically predicted higher TMAO and carnitine were not associated with higher odds of T2DM, AF, CAD, MI, stroke, and CKD after Bonferroni correction (P≤0.0005). However, we observed that genetically increased choline showed a suggestive association with higher risk of T2DM (odds ratio: 1.84, 95% confidence interval: 1.00 to 3.42 per 10 units, P=0.05). In contrast, genetically predicted higher betaine (0.68, 0.48 to 0.95 per 10 units, P=0.023) was suggestively associated with a lower risk of T2DM. We observed a suggestive association of genetically increased choline with a lower level of body fat % (beta: -0.28, SE: 0.11, P=0.013), but a higher level of estimated glomerular filtration rate (0.10±0.05, P=0.034). We further found that T2DM (beta: 0.130, SE: 0. 0.036, P<0.0001) and CKD (0.483±0.168, P=0.004) were causally associated with higher TMAO levels. Our MR findings support that T2DM and kidney disease increase TMAO levels and observational evidence for cardiovascular diseases may be due to confounding or reverse causality.
Citation
ID:
4711
Ref Key:
jia2019assessmentdiabetes