Influence of proxy data uncertainty on data assimilation for the past climate

Influence of proxy data uncertainty on data assimilation for the past climate

Matsikaris, A.;Widmann, M.;Jungclaus, J.;
climate of the past 2016 Vol. 12 pp. 1555-1563
383
matsikaris2016influenceclimate

Abstract

Data assimilation (DA) is an emerging topic in palaeoclimatology and one of the key challenges in this field. Assimilating proxy-based continental mean temperature reconstructions into the MPI-ESM model showed a lack of information propagation to small spatial scales . Here, we investigate whether this lack of regional skill is due to the methodology or to errors in the assimilated reconstructions. Error separation is fundamental, as it can lead to improvements in DA methods. We address the question by performing a new set of simulations, using two different sets of target data; the proxy-based PAGES 2K reconstructions (DA-P scheme), and the HadCRUT3v instrumental observations (DA-I scheme). Again, we employ ensemble-member selection DA using the MPI-ESM model, and assimilate Northern Hemisphere (NH) continental mean temperatures; the simulated period is 1850–1949 AD. Both DA schemes follow the large-scale target and observed climate variations well, but the assimilation of instrumental data improves the performance. This improvement cannot be seen for Asia, where the limited instrumental coverage leads to errors in the target data and low skill for the DA-I scheme. No skill on small spatial scales is found for either of the two DA schemes, demonstrating that errors in the assimilated data are not the main reason for the unrealistic representation of the regional temperature variability in Europe and the NH. It can thus be concluded that assimilating continental mean temperatures is not ideal for providing skill on small spatial scales.

Citation

ID: 44773
Ref Key: matsikaris2016influenceclimate
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
44773
Unique Identifier:
d8b476f4df90a60a8508c879ef5d0bb7
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet