Protein secondary structure prediction using neural networks and deep learning: A review.

Protein secondary structure prediction using neural networks and deep learning: A review.

Wardah, Wafaa;Khan, M G M;Sharma, Alok;Rashid, Mahmood A;
Computational biology and chemistry 2019 Vol. 81 pp. 1-8
301
wardah2019proteincomputational

Abstract

Literature contains over fifty years of accumulated methods proposed by researchers for predicting the secondary structures of proteins in silico. A large part of this collection is comprised of artificial neural network-based approaches, a field of artificial intelligence and machine learning that is gaining increasing popularity in various application areas. The primary objective of this paper is to put together the summary of works that are important but sparse in time, to help new researchers have a clear view of the domain in a single place. An informative introduction to protein secondary structure and artificial neural networks is also included for context. This review will be valuable in designing future methods to improve protein secondary structure prediction accuracy. The various neural network methods found in this problem domain employ varying architectures and feature spaces, and a handful stand out due to significant improvements in prediction. Neural networks with larger feature scope and higher architecture complexity have been found to produce better protein secondary structure prediction. The current prediction accuracy lies around the 84% marks, leaving much room for further improvement in the prediction of secondary structures in silico. It was found that the estimated limit of 88% prediction accuracy has not been reached yet, hence further research is a timely demand.

Citation

ID: 37387
Ref Key: wardah2019proteincomputational
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
37387
Unique Identifier:
S1476-9271(18)30501-2
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet