Cadmium background levels in groundwater in an area dominated by agriculture in Northwestern Germany.

Cadmium background levels in groundwater in an area dominated by agriculture in Northwestern Germany.

Kubier, Andreas;Hamer, Kay;Pichler, Thomas;
integrated environmental assessment and management 2019
202
kubier2019cadmiumintegrated

Abstract

Cadmium (Cd) is a highly toxic trace metal, which can be of geogenic or anthropogenic origin, e.g., minerals, phosphate fertilizers, and combustion emissions. Due to its low sorption affinity compared to other heavy metals, Cd is easily mobilized, potentially resulting in elevated Cd concentrations in groundwater. This study assessed background levels of Cd in groundwater related to hydrogeology and hydrogeochemical processes through evaluation of a large hydrogeochemical data set comprised of groundwater analyses from 6,300 wells in Northwestern Germany. Calculated Cd background levels in groundwater were between 0.01 µg/L in hydrogeological units with mainly reducing conditions and 0.98 µg/L in less reducing groundwater recharge areas. The results showed that groundwater Cd concentrations above 0.5 µg/L (the German threshold value) are not necessarily elevated, but could be the regional or ambient background level, depending on the hydrogeological unit. What would be considered as ambient background levels, however, indicated the influence by continuous intensive land use as well as the local geology, which is dominated by glacial deposits. Cadmium concentrations in groundwater were mainly controlled by hydrogeochemical and hydrogeological parameters and not by the amount of anthropogenic Cd input, in particular through the use of phosphate fertilizers. Instead, analyses of the solid phase revealed that Cd release from the aquifer matrix due to changes in hydrogeochemical parameters was more likely. Aquifer sediments in Northwestern Germany can be enriched in Cd originating from multiple sources, which in turn can cause elevated Cd concentrations in groundwater. This article is protected by copyright. All rights reserved.

Citation

ID: 34749
Ref Key: kubier2019cadmiumintegrated
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
34749
Unique Identifier:
10.1002/ieam.4198
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet