How to Develop a Drug Target Ontology: KNowledge Acquisition and Representation Methodology (KNARM).

How to Develop a Drug Target Ontology: KNowledge Acquisition and Representation Methodology (KNARM).

Küçük McGinty, Hande;Visser, Ubbo;Schürer, Stephan;
methods in molecular biology (clifton, nj) 2019 Vol. 1939 pp. 49-69
357
kucuk-mcginty2019howmethods

Abstract

Technological advancements in many fields have led to huge increases in data production, including data volume, diversity, and the speed at which new data is becoming available. In accordance with this, there is a lack of conformity in the ways data is interpreted. This era of "big data" provides unprecedented opportunities for data-driven research and "big picture" models. However, in-depth analyses-making use of various data types and data sources and extracting knowledge-have become a more daunting task. This is especially the case in life sciences where simplification and flattening of diverse data types often lead to incorrect predictions. Effective applications of big data approaches in life sciences require better, knowledge-based, semantic models that are suitable as a framework for big data integration, while avoiding oversimplifications, such as reducing various biological data types to the gene level. A huge hurdle in developing such semantic knowledge models, or ontologies, is the knowledge acquisition bottleneck. Automated methods are still very limited, and significant human expertise is required. In this chapter, we describe a methodology to systematize this knowledge acquisition and representation challenge, termed KNowledge Acquisition and Representation Methodology (KNARM). We then describe application of the methodology while implementing the Drug Target Ontology (DTO). We aimed to create an approach, involving domain experts and knowledge engineers, to build useful, comprehensive, consistent ontologies that will enable big data approaches in the domain of drug discovery, without the currently common simplifications.

Citation

ID: 3360
Ref Key: kucuk-mcginty2019howmethods
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
3360
Unique Identifier:
10.1007/978-1-4939-9089-4_4
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet