Sexual selection matters in genetic rescue, but productivity benefits fade over time: a multi-generation experiment to inform conservation.

Sexual selection matters in genetic rescue, but productivity benefits fade over time: a multi-generation experiment to inform conservation.

West, George;Pointer, Michael;Nash, Will;Lewis, Rebecca;Gage, Matt J G;Richardson, David S;
Proceedings. Biological sciences 2025 Vol. 292 pp. 20242374
12
west2025sexualproceedings

Abstract

Globally, many species are threatened by population decline because of anthropogenic changes leading to population fragmentation, genetic isolation and inbreeding depression. Genetic rescue, the controlled introduction of genetic variation, is a method used to relieve such effects in small populations. However, without understanding how the characteristics of rescuers impact rescue attempts interventions run the risk of being sub-optimal, or even counterproductive. We use the red flour beetle () to test the impact of rescuer sex, and sexual selection background, on population productivity. We record the impact of genetic rescue on population productivity in 24 and 36 replicated populations for ten generations following intervention. We find little or no impact of rescuer sex on the efficacy of rescue but show that a background of elevated sexual selection makes individuals more effective rescuers. In both experiments, rescue effects diminish 6-10 generations after the rescue. Our results confirm that the efficacy of genetic rescue can be influenced by characteristics of the rescuers and that the level of sexual selection in the rescuing population is an important factor. We show that any increase in fitness associated with rescue may last for a limited number of generations, suggesting implications for conservation policy and practice.

Access

Citation

ID: 281223
Ref Key: west2025sexualproceedings
Use this key to autocite in SciMatic or Thesis Manager

References

Blockchain Verification

Account:
NFT Contract Address:
0x95644003c57E6F55A65596E3D9Eac6813e3566dA
Article ID:
281223
Unique Identifier:
20242374
Network:
Scimatic Chain (ID: 481)
Loading...
Blockchain Readiness Checklist
Authors
Abstract
Journal Name
Year
Title
5/5
Creates 1,000,000 NFT tokens for this article
Token Features:
  • ERC-1155 Standard NFT
  • 1 Million Supply per Article
  • Transferable via MetaMask
  • Permanent Blockchain Record
Blockchain QR Code
Scan with Saymatik Web3.0 Wallet

Saymatik Web3.0 Wallet